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Abstract

There is a wealth of evidence to suggest that the bearing cables of cable-stayed bridges may experience
large-amplitude oscillations, attributed in general to parametric resonance with the girder vibrations. A
common coutermeasure consists of connecting the principal stays together with secondary cables to form a
network and, here, optimal cable arrangments will be discussed when such a network is uniform and
triangular meshed. The present approach is qualitative, and basically consists of homogenizing the cable net
to an orthotropic elastic membrane, and then considering an auxiliary structure where the bridge girder,
instead of being supported by the cable network, is supported by wedge-shaped membranes. The elastic
solution under uniformly distributed loads, found using Lekhnitskii’s approach, is the starting point for the
discussion of the system in dynamic equilibrium. Having established a correspondence between the cable-
net size and shape and the elastic moduli of the homogenized membrane, simple formulas are obtained
to describe the global bridge vibration, as well as the local oscillations of the cables. It is then possible to
estimate the girder and cable-net characteristic frequencies, to evaluate those conditions possibly leading
to parametric resonance and, with respect to these variables, to determine optimal cable arrangements.
This method is finally applied to the paradigmatic example of the Normandy Bridge.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Consideration of recent problems provides evidence that the bearing stays of cable-stayed
bridges can undergo large amplitude vibrations [1]. For example, important oscillations were
observed in the stays of the Brotonne Bridge [2] just after its opening and, despite the fact that
the girder oscillations were hardly perceptible, the dynamic cable sag was of the order of meters.
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To shore them up, truck dampers were placed at the base of the stays, but the precariousness and,
somehow, the brutality of the adopted countermeasure, testifies to how unexpectedly the problem
occurred. The phenomenon has been observed by long-term monitoring of other modern cable-
stayed bridges, as in the case of the Annancis [3], Faro [4], Tj .orn [5], Tampico [6], Helgeland [7],
Ben-Ahin and Wandre [8] bridges, to mention just a few examples in Europe.
Although there is no universal agreement about the causes of vibration, possible explanations

essentially follow two different ways of thinking. According to the first rationale, vibrations are
due to external environmental actions acting directly on the stays. In particular, the wind-tunnel
experiments by Hikami and Shiraishi [9] have shown that it is the combination of rain and wind,
rather than their separate action, that provokes aerodynamic instability. The excitation is due to
the change in shape of the stay-sheath profile, produced by the wind-induced formation of a water
rill at the extrados of the cable. A completely different explanation points instead to an interaction
between the vibrations of the stays and the oscillations of their extremities anchored to girder and
pylons [10]. If some resonance conditions are satisfied, energy can flow to the stays and provoke
their large-amplitude oscillations. Each of these aspects has been the subject of careful
investigations [11], in many cases followed by laboratory and in situ testing [12].
In this paper, only this second type of instability will be explicitly considered, but some of the

deductions that follow might also be applied to the rain–wind-induced vibrations. In particular,
the discussion will focus on the advantages of a countermeasure commonly adopted in the design
practice, which consists of linking the stays together with secondary inter-ties, sometimes referred
to as counter-stays, to form a cable network. Many important bridges, likewise Leonhardt’s
proposal for the Messina strait crossing [13] or the Normandy bridge [14–16], make use of such a
system of secondary cables, connecting intermediate points of the main stays to the girder.
To illustrate this, reference will be made to the classical layout of a three-span bridge, of the

type represented in Fig. 1. Here, the girder is attached to pylons by a triangular-mesh net, formed
by three orders of parallel elastic cables firmly connected at the intersection points. This scheme
derives from a traditional cable-stayed bridge of the harp type whose stays, referred to as the
principal stays (emphasized in bold lines in Fig. 1), are connected by two sets of parallel wires,
referred to as the secondary cables, inclined at a fixed angle with respect to the principal stays.
In order to treat the problem in analytical form, the following hypotheses are introduced:

(i) the secondary stays have been properly pre-tensioned, so that they can withstand limited
compressive loads as tension decreases; (ii) the cables are small in diameter and very numerous;
(iii) the principal stays, as well as the secondary cables, respectively, have a constant cross-section,

Fig. 1. Typical network cable-stayed-bridge layout.
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and are equidistant; (iv) the bridge girder is axially stiff and perfectly flexible in bending, while the
pylons are rigid.
Hypothesis (i) reflects the common practice in most cable-stayed bridges with counter-stays (see

for example Ref. [13] or [15]). In fact, for safety and durability requirements, the counter-stays are
pre-tensioned to avoid their slackening under live loads. Condition (ii) is almost a rule in modern
design: for many reasons, first of all maintenance feasibility (i.e., stay replacement), it is preferable
to have many small-diameter stays rather than just a few large-diameter cables [17]. Postulating a
continuous ‘curtain’ will provide the basis for an analytical approach to the problem.
Hypotheses (iii) and (iv) may appear less realistic, since in most bridges the stay cross-sections

are usually not constant, deck flexural inertia is not negligible and pylon deformation may be
considerable. However, there are at least two cases in which such conditions are acceptable:
medium-span slender-deck bridges and long-span bridges.
During the last decade, the new design ‘‘concept’’ of slender-deck cable-stayed bridges has proved

to be both economical and aesthetically pleasing for medium-span bridges (around 200 mÞ [17].
From a static point of view, a slender deck is useful for reducing the bending moment under live
loads, but slenderness enhances bridge deflection. This, however, is not an insurmountable problem,
since the bridge sag under dead loads can be compensated by a properly designed camber, while the
sag under live loads can be limited by strengthening the bridge pylons (either increasing their inertia,
or connecting the back stays to massive anchorage blocks). In medium-span bridges, the deck is
usually reduced to a simple concrete slab (30–50 cm thick), with considerable advantages for both
construction and long-term durability (the Diepolsau bridge in Switzerland [17] is a paradigmatic
example). In bridges of this kind, a large deck cross-sectional area is associated with a negligible
flexural inertia, as well as stiff pylons. Moreover, the heaviness of the concrete deck results in dead
loads that usually exceed live loads. Since dead loads are uniformly distributed, in bridges of the
harp-type the principal-stay cross-sections are practically constant.
Similar considerations also hold true for long-span cable-stayed bridges. Now, structural

feasibility, aeroelastic stability, serviceability and—why not—aesthetics, force the limitation of the
girder-beam height to a small fraction of the main span of the bridge. For long-span cable-stayed
bridges, which meet the aforementioned characteristics of medium-span slender-deck bridges,
hypotheses (iii) and (iv) may thus be considered, albeit approximately, verified.
These assumptions will allow the conception, through homogenization of the cable-net, of an

ideal model in linear elasticity to study the structural scheme of Fig. 1. The continuum approach
will provide simple formulas for the rapid calculation of the most important dynamic parameters,
to be used in the preliminary design phases. Of course, this method does not intend and cannot
replace an FEM analysis, which should always corroborate the final design. Nevertheless, a
closed-form solution, though approximate, may be helpful to the designer, since it allows a
comprehensive and concise view of the role played by the various parameters, in particular by the
cable-net shape and size.
The outline of the present paper is the following. In Section 2, germane to the analysis of the

continuum model, the phenomenon of parametric resonance is introduced for the case of one
vibrating stay. In Section 3, a correspondence is established, through homogenization, between a
real bridge and an ideal boundary value problem in linear elasticity, i.e., that of a uniformly
loaded flexible beam suspended by an anisotropic elastic wedge-shaped membrane. For this elastic
model a closed-form solution is calculated, which will be used in Section 4 for determining the
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system’s natural frequencies. In Section 5, the dynamic behavior of the model is further
investigated in response to pulsing loads acting on the girder, with emphasis on possible
parametric resonance conditions. Because of the established correlation between the elastic
moduli of the membrane and the shape and size of the cable network, it will be possible to
investigate optimal cable-net arrangements to contain stay oscillations in a real bridge. Finally, in
Section 6, the continuum approach will be applied to the representative example of the Normandy
Bridge.

2. Preliminaries. Parametric resonance for one vibrating stay

Parametric resonance instability occurs when one of the parameters that influence the system
natural vibrations varies with time due to the action of external causes. This phenomenon has
been mentioned by Kov"acs [10] to explain the large amplitude oscillations of the stays, in which it
is the variation of their axial stress due to girder movements that provokes the instability. Kov"acs
considers one stay isolated from the remaining structure and, neglecting the cable slope, examines
a problem similar to that of Fig. 2. Here, a vertical linear-elastic string, of length L; cross-sectional
area A; mass-per-unit-length r and Young’s modulus E; is suspended at the upper extremity,
while it supports a mass M; representative of the deck, and its lower end. Since MbrL; in static
equilibrium the cable is vertical and its axial force N0 is approximately constant and equal to Mg
(g is the gravity acceleration). Kov"acs models the effect of the anchor-point movements as an
equivalent pulsing vertical load P ¼ P0 sinð2OtÞ; applied at the cable lower extremity as in Fig. 2.
Such movements are due to the girder oscillations, caused in general by environmental or traffic
loads.
Despite the resulting model being very well known [18], it is now recalled in detail because the

classical hypotheses used in the one-dimensional case will be naturally extended to two
dimensions (2-D). With reference to the system ðx; yÞ of Fig. 2, let u ¼ uðx; tÞ and v ¼ vðx; tÞ
represent the displacement components in the x and y directions for particles initially at x

for t ¼ 0: The partial derivative of uðx; tÞ with respect to x and t; respectively, will be denoted
by u;x and u;t: Then, the crucial hypothesis, due to Kirchhoff [19], consists in assuming that when
the string moves from the vertical reference equilibrium configuration, its axial strain is
approximated by

e ¼ u;x þ 1
2

v2;x; ð1Þ

so that strain energy reads

U ¼ N0

Z L

0

u;x þ 1
2

v2;x

� �
dx þ 1

2
EA

Z L

0

u;x þ 1
2

v2;x

� �2
dx: ð2Þ

Thus, assuming still under Kirchhoff [19] that u;tðx; tÞ5v;tðx; tÞ in the kinetic energy, a standard
application of Hamilton’s principle with the boundary conditions

uð0; tÞ ¼ 0;

vð0; tÞ ¼ 0;

vðL; tÞ ¼ 0 ð3Þ
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gives the field equations

EA
@

@x
ðu;x þ 1

2
v2;xÞ ¼ 0 ð4Þ

�rv;tt þ N0v;xx þ EA
@

@x
v;x u;x þ 1

2 v2;x

� �h i
¼ 0 ð5Þ

and the natural condition

EA½u;xðL; tÞ þ 1
2
ðv;xðL; tÞÞ

2� ¼ P0 sinð2OtÞ: ð6Þ

From Eq. (4), it is easily seen that EAðu;x þ 1
2

v2;xÞ is a function of t only and, from Eq. (6), this
equals P0 sinð2OtÞ: Thus, eliminating uðx; tÞ in the resulting system of equations, the problem is
governed by

�rv;tt þ ½N0 þ P0 sinð2OtÞ�v;xx ¼ 0 ð7Þ

to which the boundary conditions ð3Þ2 and ð3Þ3 must be added.
To solve Eq. (7), the solutions are expanded in uniformly convergent sequences in the form

vðx; tÞ ¼
P

N

k¼1 wkðxÞ qðtÞ: Inserting the resulting expressions into Eq. (7) and requiring that all of

y

M

P0 sin(2Ω t)

x

Fig. 2. The vibrating stay model.
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the terms of the sequence are zero, one obtains the eigenvalue problem

w00
k þ zk wk ¼ 0;

r .qk þ zk½N0 þ P0 sinð2OtÞ�qk ¼ 0: ð8Þ

From the first of these equations, taking into account Eqs. ð3Þ2 and ð3Þ3; it is immediately found
that zk > 0 and wk ¼ Ck sinðkpx=LÞ; which represents the kth modal shape. The corresponding
kth eigenvalue takes the form

zk ¼
k2p2

L2
;

so that Eq. ð8Þ2 reduces to

.qk þ
k2p2

rL2
½N0 þ P0 sinð2OtÞ�qk ¼ 0:

Let now ok denote the quantity

ok ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p2N0

rL2

s
; ð9Þ

which represents the natural frequency of the string now supposed fixed at its extremities.
Introducing the normalized variable t ¼ ðOt � pÞ; one obtains the canonical expression for
Mathieu’s equation

d2

dt2
qk þ ½lk � 2mk sinð2tÞ�qk ¼ 0; ð10Þ

where the parameters lk and mk are given by

lk ¼
o2

k

O2
; mk ¼

o2
k

O2

P0

2N0
: ð11Þ

Since Eq. (10) is a linear differential equation with real periodic coefficients, the general theory
by Floquet assures that it supports solutions unlimited in time depending upon the values of the
coefficients lk and mk [18]. The corresponding instability conditions are summarized in stability
charts of the type represented in Fig. 3, where the instable regions in the plane ðl;mÞ are hatched in
the picture. From Eq. (11), notice that, for fixed N0 and P0; the points of interest in the ðl; mÞ plane
lie on the lines

lk ¼
2N0

P0
mk: ð12Þ

Now, condition N0bP0 is certainly verified for a vibrating bridge-stay. This means that the
lines (12) are almost vertical (dotted line in Fig. 3). It thus follows from Fig. 3 that the system
oscillations become unbounded when lk is in a neighborhood of the values 1, 4, 9 and so on. The
first instability condition occurs when lkC1; corresponding to the case in which okCO; i.e., the
frequency of the external load is twice the kth natural frequency of the string, supposed fixed at its
extremities.
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Similarly instability occurs when lkC4; i.e., when the frequency of the pulsing load and the
natural frequency of the cable coincide. However, this second condition is to be considered less
dangerous than lkC1; because for the same value of the ratio N0=P0; the range of ls for which
instability occurs (see Fig. 3) is larger in a neighborhood of l ¼ 1 than in a neighborhood of
l ¼ 4: Recall that, here, the pulsing load P0 sinð2OtÞ models the action transmitted to the stay
anchor points by the oscillations of the whole girder which, depending upon traffic or
environmental loads, are usually randomly variable in time. Of course, the smaller the resonance
interval is, the less is the probability that the frequency O remains in that interval for a time
sufficiently long to enforce large amplitude oscillations. A similar reasoning can be repeated for
the other resonance intervals in neighborhoods of l ¼ 9; 16; etc.
In general, environmental or traffic loads may provoke large-amplitude girder oscillations only

when in resonance with the overall bridge vibration modes, which implies that 2Omay be assumed
of the same order of the fundamental bridge eigenfrequency. Therefore, the rule of thumb,
commonly employed in the design practice, consists in checking that the fundamental
eigenfrequency of the bridge is sufficiently distant from twice the fundamental eigenfrequency
of each stay, the latter being calculated by supposing the anchorages as fixed points and neglecting
the stay bending stiffness and internal damping. Such a criterion is employed in the preliminary
design phase also when the principal stays are connected by inter-ties. In this case, it is customary
[14] to assume that the net nodes are fixed and consider the free vibrations of the cable portions
comprised between two contiguous nodes. This procedure, however, certainly over-estimate the
stiffness of the network, considered as a whole and, consequently, the comparison with the
fundamental bridge eigenfrequency has to be questioned on theoretical grounds.

λ

-8 -4

1

4

9

4

1

4 8 µ

Fig. 3. Stability chart for Mathieu’s equation.
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3. The continuum model and the auxiliary problem

In order to consider the complex interactions of the various parts of the system (stay, girder and
inter-tie), a qualitative approach may be attempted through an equivalent continuum model,
obtained by homogenizing the suspension cable network. A ‘‘representative-volume-element’’ R
for such a net is drawn in Fig. 4. The group of fibers drawn horizontally, corresponding to the
harp-arranged principal stays of Fig. 1, will be referred to as the principal cables, to distinguish
them from the secondary cables, represented by the two sets of inclined parallel inter-ties.
If the cable net is tight meshed (i.e., formed by numerous small, evenly distributed little cables),

one may assume that when it undergoes a small strain accompanied by small rotations, in any
region of dimensions comparable with those of R the strain is homogeneous and the rotation
uniform. The corresponding axial force in each of the elements in R can be easily calculated and,
following a well-known procedure sometimes employed in technical applications, one can imagine
‘‘smearing’’ the forces in the fibers onto the boundary of the representative-volume-elementR and
consider an equivalent continuous material. Recall from the Introduction that cables have been
properly pre-tensioned, so that they can withstand compressive loads as tension decrements. In
other words, the net is equivalent to a truss for what its structural response is concerned and,
because of its symmetry, the homogenized material results to be an elastic homogeneous and
orthotropic membrane, with the orthotropy directions parallel to the vectors e1 and e2 of Fig. 4.
Assume that cables are made of a linear elastic material, with Young’s modulus E; and let their
cross sections be equal to A1 and A2 for principal and secondary cables, respectively. Using
standard notation [20, Chapter 9], the constitutive equations for the equivalent continuum, when
referred to a system ðx; yÞ parallel to the axes of orthotropy (Fig. 4), take the form

exx ¼
1

E1
sxx �

n1
E1

syy;

eyy ¼ �
n2
E2

sxx þ
1

E2
syy;

exy ¼
1

2G
txy; ð13Þ

y

e2

e1 d2

d1

x

γ

Fig. 4. A representative volume element for the suspension cable net.
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where

1

E1
¼

d1

EA1
h;

1

E2
¼

d1

EA2 sin
3g tan g

þ
d1

EA1 tan
4 g

	 

h;

n1
E1

¼
n2
E2

¼
d1

EA1 tan2 g
h;

1

G
¼

d1

EA2 cos g sin
2 g

h: ð14Þ

Here h is a reference thickness, whereas parameters d1; g and d2 ¼ d1 cot g; which define net shape
and size, are indicated in Fig. 4.
When the suspension net in Fig. 1 is replaced by homogenized triangle-shaped membranes, an

ideal ‘‘web bridge’’ is obtained, whose dynamical response may be evaluated analytically.
Information about the original network suspended bridge can afterwards be derived through the
correspondence established by Eq. (14).
Germane to the dynamical analysis, consider first the static equilibrium of a web bridge

subjected to the uniformly distributed load q0: For, as mentioned in the Introduction, assume that
the bridge is of the slender deck type [17]. In the borderline case where the girder has no bending
stiffness but is axially rigid and the pylons are stiff, using symmetry considerations, the problem
may be simplified as in Fig. 5. Such structure is obtained by connecting a horizontal beam to a
wedge-shaped orthotropic elastic membrane, clamped on the vertical side and free on the oblique
side. The beam is drawn with many hinges to recall that it is assumed to be perfectly flexible but
axially stiff. The elastic problem consists in determining the stress field in the wedge when a
vertical, uniformly distributed, load q0 acts on the beam.
For convenience, introduce the reference system ðx; yÞ and polar co-ordinates ðr; yÞ; such that

the orthotropy directions of the wedge-shaped membrane are parallel to axes x and y;
corresponding to y ¼ 0 and y ¼ p

2
: Let fu; vg; fsxx;syy; txyg; fexx; eyy; exyg represent the

displacement, stress and strain components in the ðx; yÞ reference system, while their counterparts
in polar co-ordinates will be denoted by fur; vyg; fsrr; syy; tryg and ferr; eyy; eryg: In the following,
cartesian or polar reference system will be indifferently used whenever more convenient. The

y

r

L

�

�
orthotropy
directions

S

q0

H

x

Fig. 5. The auxiliary problem for the wedge-beam assembly.
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boundary conditions for this problem take the form

syy ¼ �q0=h; err ¼ 0 for y ¼ �a;

syy ¼ 0; try ¼ 0; for y ¼ 0;

ur ¼ 0; vy ¼ 0 at r ¼ L=cosðyþ aÞ;�apyp0: ð15Þ

Solutions for anisotropic wedges have been discussed, with different approaches, by several
authors (see for example Ref. [21], in particular Art. 8.5 of [22], and references therein reported).
Despite formalism and solution techniques have been continuously improving [23,24], here
reference is made to the original method by Lekhnitskii [20], whose notation presents the great
advantage that the material elastic properties can be summarized in just a few parameters (the
complex parameters), strictly correlated with the cable-network size and shape.
Following Ref. [20], Art. 5, a plane problem in homogeneous anisotropic elasticity is confined

to the selection of a complex stress-function F that verifies the differential equation

D1D2D3D4ðF Þ ¼ 0; ð16Þ

where, in polar co-ordinates, the differential operator Dk reads

Dk ¼ ðsin y� mkcos yÞ
@

@r
þ ðcos yþ mksin yÞ

1

r

@

@y
; k ¼ 1;y; 4: ð17Þ

Here, mk; k ¼ 1;y; 4; denotes four complex numbers, in the following referred to as the complex
parameters. Since they turn out to be the roots of the characteristic equation:

f ðmÞ ¼
m4

E1
þ

1

G
� 2

n1
E1

	 

m2 þ

1

E2
¼ 0; ð18Þ

they synoptically describe the material elastic properties. Once F is known, the stress components
in polar co-ordinates are given by

srr ¼
1

r

@F

@r
þ

1

r2
@2F

@y2
; syy ¼

@2F

@r2
; try ¼ �

@2

@r @y
F

r

	 

: ð19Þ

By considering a stress function of the form

F ðr; yÞ ¼ r2FðyÞ; ð20Þ

one finds that the boundary conditions ð15Þ1 and ð15Þ2 result from Eq. (19) automatically satisfied.
Moreover, the solution that can be obtained from Eq. (20) can be considered sufficiently accurate,
provide one accepts an approximation for what condition ð15Þ3 is concerned. Such an
approximation is legitimate if the wedge is so long to be considered infinite.
The explicit expression for FðyÞ is found by inserting expression (20) into Eq. (16) and

integrating four times successively. As a result,

FðyÞ ¼ A cosð2yÞ þ B sinð2yÞ þ CjðyÞ þ D; ð21Þ

where the constants A; B; C and D are found from the boundary conditions ð15Þ1 and ð15Þ2: In
general, the expression for jðyÞ Ref. [20, Art. 7] varies according to the possible nature of the
roots of the characteristic equation (18). Two different cases must be distinguished.
In case I, the complex parameters are pure distinct imaginary numbers, say m1 ¼ ib; m2 ¼ id;

m3 ¼ %m1 and m4 ¼ %m2; with bad: In this situation, after some calculation, one finds that the general
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solution for Eq. (16) implies

jðyÞ ¼ �
b

b2 � d2
ðcos2 y� d2 sin2 yÞ arctanðd tan yÞ

þ
d

b2 � d2
ðcos2 y� b2 sin2 yÞ arctanðb tan yÞ

þ
bd

b2 � d2
sin y cos y ln

cos2 yþ b2sin2 y

cos2 yþ d2 sin2 y
: ð22Þ

In the second case (case II), in which the complex parameters are of the form m1 ¼ xþ iZ;
m2 ¼ �xþ iZ; m3 ¼ %m1 and m4 ¼ %m2; denoting m2 ¼ x2 þ Z2; one finds

jðyÞ ¼ �
xZ2

m6
cosð2yÞ ln

m2 sin2 yþ 2x sin y cos yþ cos2 y

m2 sin2 y� 2x sin y cos yþ cos2 y

�
4xZ
m6

arctan
Z cos y

m2sin yþ x cos y

� 2Z2 cos y sin yþ
x
m2

cos y
	 


þ x sin2 yþ
x
m2

sinð2yÞ þ
x2 � Z2

m4
cos2 y

	 
� �

þ
4xZ
m6

arctan
Z cos y

m2 sin y� x cos y

� 2Z2 cos y sin y�
x
m2

cos y
	 


� x sin2 y�
x
m2

sinð2yÞ þ
x2 � Z2

m4
cos2 y

	 
� �
: ð23Þ

The borderline case when the complex parameters are pure imaginary, but pairwise equal, i.e.,
m1 ¼ m2 ¼ ib; m3 ¼ m4 ¼ %m1; can be obtained by a proper limit of the above expressions. In
particular, when the material is isotropic, corresponding to m1 ¼ m2 ¼ i and m3 ¼ m4 ¼ �i; one
easily finds jðyÞ ¼ y:
For a better characterization of the problem, it is useful to introduce the quantities

p ¼
A1

d1
; q ¼

A2

d2 sin g
¼

A2

d1 cos g
: ð24Þ

Their significance is clear from the fact that, denoting with A � 1
2

LH the area of the wedge in
Fig. 5, the total volume of the material used for the cables is given by ðp þ qÞA; whereas pA and
qA represent the material quantities used for the principal and secondary cables, respectively.
Expressions (14) then become

1

hE1
¼

1

pE
;

1

hE2
¼

1

Eq sin4 g
þ

1

Ep tan4 g
;

n1
hE1

¼
n2

hE2
¼

1

Ep tan2 g
;

1

hG
¼

1

Eq cos2 g sin2 g
ð25Þ
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and the characteristic equation (18) takes the form

m4

p
þ

1

q cos2 g sin2 g
�

2

p tan2 g

	 

m2 þ

1

q sin4 g
þ

1

p tan4 g
¼ 0: ð26Þ

In general, it is clear that the principal stays must be much stronger that the secondary cables,
since the formers directly sustain the bridge girder, while the latter are usually introduced for a
subordinate purpose, (i.e., to inhibit the stay vibrations). Therefore, one may limit consider about
the case in which the amount of material used for the principal cables is much greater than that
used for the secondary ones, that is pbq: Under this assumption, Eq. (26) can be simplified by
neglecting high order terms in

m4

p
þ

m2

q cos2 g sin2 g
þ

1

q sin4 g
¼ 0: ð27Þ

The discriminant of this equation is positive when pbq: Consequently, the characteristic
parameters, ib and id; are pure imaginary numbers as in case I. Neglecting higher order terms,
they take the form

bD
1

cos g sin g

ffiffiffi
p

q

r
; dD

1

tan g
: ð28Þ

It should be noticed that the parameter d practically depends solely upon the geometry
of the network (Fig. 4), whereas b takes into account also the distribution of material
between the principal and secondary cables. Indeed, the convenience of Lekhnitskii’s notation
lies in this direct correlation between the characteristic parameters and the network shape
and size.
Determining the constants A; B; C and D appearing in Eq. (21) from conditions ð15Þ1 and

ð15Þ2 is not easy, even in case I. A more convenient way to handle the problem is to introduce a
complex potential of the generalized complex variables z1 ¼ x þ ib and z2 ¼ x þ id: Following the
generalized complex-variable technique outlined in Ref. [20], the expression of stress, strain and
displacement take a concise, convenient form. The corresponding calculations are reported in the
appendix for the reader’s convenience. The result is that the Cartesian components of the stress
field read

sxx ¼
q0

h sin2 a
1þ K2 �

2bd sin2 a

ðb2 � d2Þ
K1 d arctan

dy

x
� b arctan

by

x

	 
� �
;

syy ¼ �
2q0

hðb2 � d2Þ
K1 d arctan

by

x
� b arctan

dy

x

	 

;

txy ¼
q0bd

hðb2 � d2Þ
K1 ln

x2 þ b2y2

x2 þ d2y2
; ð29Þ

where K1 and K2 are constants. Recalling that ib and id are the roots of the characteristic equation
(18), so that

E1

E2
¼ b2d2;

E1

G
� 2n1 ¼ b2 þ d2; ð30Þ
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the quantities K1 and K2 can be written in the form

K1 ¼ðb2 � d2Þðcos2 a� n1 sin
2 aÞ= ðbd sin a cos aÞ

�

� ½ðb2 þ d2Þ sin2 aþ 2 cos2 a� ln
1þ b2 tan2 a

1þ d2 tan2 a

	 


þ 2½b arctanðd tan aÞ � d arctanðb tan aÞ�½b2d2 sin4 a� cos4 a�
�

ð31Þ

and

K2 ¼
2K1

b2 � d2
dðb2 sin2 a� cos2 aÞ arctanðb tan aÞ

�

� bðd2 sin2 a� cos2 aÞ arctanðd tan aÞ � bd sin a cos a ln
1þ b2 tan2 a

1þ d2 tan2 a

	 
�
: ð32Þ

Having assumed pbq; one has from (28) that bb1: Consequently, expanding in Taylor’s series
(31) and (32), one obtains

K1 ¼
cos2 a� n1 sin

2 a

d sin3 a 2d sin a arctanðd tan aÞ þ cos a ln
1þ b2 tan2 a

1þ d2 tan2 a

	 
� �

�
1

b

	 

þ 2d2

sin a arctanðb tan aÞ

2d sin a arctanðd tan aÞ þ cos a ln
1þ b2 tan2 a

1þ d2 tan2 a

	 
 1

b2

	 

þ o

1

b2

	 
2
6664

3
7775 ð33Þ

and

K2 ¼ K1 2d sin2 a arctanðb tan aÞ þ O
1

b

	 
� �
: ð34Þ

Notice that both K1 and K2 are positive and their order of magnitude is

K1 ¼ O
1

b ln b

	 

; K2 ¼ O

1

b ln b

	 

: ð35Þ

Consequently, it follows from Eq. (29) that, as expected

sxx ¼
q0

h sin2 a
þ o

1

b2

	 

; syy ¼ o

1

b2

	 

; txy ¼ o

1

b2

	 

: ð36Þ

It is easy to verify that in the borderline case when p=q-N and, consequently from Eqs. (25)
and (28), E2-0; G-0; n1-0 and b-þN; the state of stress is given by

sxx ¼
q0

h sin2 a
; syy ¼ 0; txy ¼ 0: ð37Þ

This condition corresponds to the vanishing of the set of secondary stays, i.e., the bridge is a
traditional cable-stayed one of the harp type.
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For the following considerations, it is necessary to calculate the displacement field. It should be
noticed that in a solution of type (20) the two conditions ð15Þ1 and ð15Þ2 are precisely fulfilled,
whereas Eq. ð15Þ3 can only approximately be verified. In order to eliminate the indeterminacy of
rigid-body motions, one requires instead of Eq. ð15Þ3 that

u cos a� v sin a ¼ 0 at ðx; yÞ ¼ ð0; 0Þ;

u ¼ 0 at ðx; yÞ ¼ ðL cos a;�L sin aÞ;

u ¼ 0 at ðx; yÞ ¼ ðL=cos a; 0Þ: ð38Þ

Calculations can be simplified using the theory of complex potential of generalized complex
variable. Referring to the appendix for more details, the displacement expressions for p=qb1; and
consequently bb1; take the form

uðx; yÞ ¼
q0

E1h sin
2 a

ð1þ K2Þ x � y tan a�
L

cos a

	 
�

þ K1ybd sin
2 a ln

x2 þ b2y2

L2ðcos2 aþ b2 sin2 aÞ

þ2K1d sin a x sin a arctan
by

x
� y cos a arctanðb tan aÞ

� �
þ O

1

b2

	 
�
; ð39Þ

vðx; yÞ ¼
q0

E1h sin
2 a

ð1þ K2Þ �n1y þ x tan a�
L

sin a

	 
�

� K1xbd sin
2 a ln

x2 þ d2y2

L2ðcos2 aþ b2 sin2 aÞ
þ 2K1bd

2y sin2 a arctan
dy

x

�2K1d sin a y ðd2 þ n1Þ sin a arctan
by

x
� x cos a arctanðb tan aÞ

� �
þ O

1

b2

	 
�
: ð40Þ

From these formulas, what is important is to calculate the displacement of the horizontal side
y ¼ �x tan a of the wedge, where this is connected to the beam. In particular, the vertical
displacement Z of the beam is given by

Z ¼ �ðu sin aþ v cos aÞ: ð41Þ

For, introducing the co-ordinate s such that (Fig. 5) the horizontal beam has the parametric
equation

x ¼ s cos a; y ¼ �s sin a; 0pspL; ð42Þ

one obtains after simple, though time consuming, calculations

Z ¼
q0

E1h sin
3 a

ð1þ K2Þ
L � s

cos a
þ K1bds sin3 a ln

s2

L2
þ o

1

b

	 
� �
: ð43Þ

To realize how the presence of the secondary stays influence the deflection of the bridge,
consider p=q ¼ 10 and g ¼ 451; for which bC6:5; dC1; K1 ¼ 0:232 and K2 ¼ 0:086: This
example may be compared through (43) with the borderline case of a classical harp-type cable
stayed bridge (with no inter-ties), characterized by K1 ¼ 0 and K2 ¼ 0: The corresponding graphs
are juxtaposed in Fig. 6. As expected, since the beam has no bending stiffness, the deformation of
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the bridge when K1 ¼ K2 ¼ 0 is a straight line. The deformed shape with secondary cables is
always above this line, since any addition of material can only increase the stiffness of the bridge.
However, notice that the girder sag close to the bridge mid-span is practically the same in the two
conditions, an evident sign that the secondary cables have only a limited influence upon the bridge
deflection.

4. The vibrations of the bridge

The influence of the secondary cables upon the vibrations of the whole bridge is now
investigated by studying the natural vibrations of the system in Fig. 5. Let r represent the mass
per unit area of the homogenized orthotropic wedge, and let m be the mass per unit length of the
beam connected to the wedge on the horizontal side. Since in any bridge the girder is much heavier
than the stays, one may assume rLH=25mL: In other words, the overall natural vibrations of
the system may be accurately calculated by neglecting the mass of the wedge even if, of course,
the influence of r will result fundamental when analyzing local oscillations (this will be done in the
next section).
The fundamental vibration frequency of the system is estimated using Rayleigh’s method. The

first oscillation mode of the bridge is approximated by its deformed shape due to a load mg;
uniformly distributed along the girder. From Eq. (43), neglecting terms of higher order than 1=b;
recall that the girder deflection takes the form

%ZðsÞ ¼
mg

E1h sin
3 a

ð1þ K2Þ
L � s

cos a
þ K1bds sin3 a ln

s2

L2

� �
; ð44Þ
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Fig. 6. Girder deflection with and without secondary cables (L ¼ 150 m).

G.F. Royer-Carfagni / Journal of Sound and Vibration 262 (2003) 1191–1222 1205



where b; d;K1 and K2 have been defined in Eqs. (28), (31) and (32). The first natural frequency o
of the bridge is consequently estimated by

o2 ¼ g

R L

0 m%ZðsÞ dsR L

0 m%Z2ðsÞ ds
¼ g

R L

0 %ZðsÞ dsR L

0 %Z2ðsÞ ds
: ð45Þ

Introducing the quantities

A ¼
ð1þ K2Þ
cos a

; B ¼ K1bd sin
3 a; ð46Þ

Eq. (45) becomes

o2 ¼
27

2

E1h sin
3 a

mL

ðA � BÞ
ð9A2 � 15AB þ 8B2Þ

: ð47Þ

Now, in the borderline case where the secondary cables are absent, since K1 ¼ K2 ¼ 0; it results
in

A ¼
1

cos a
; B ¼ 0 ð48Þ

and the natural frequency o0 reads

o2
0 ¼

3

2

E1h sin
3 a cos a

mL
: ð49Þ

In the general case, observing from Eq. (35) that

A ¼
1

cos a
þ O

1

b ln b

	 

; B ¼ O

1

ln b

	 

; ð50Þ

and using Eq. (45) one finds that

o2 ¼ o2
0 1þ O

1

ln b

	 
� �
: ð51Þ

But, recall from Eq. (28) that bDð1=cos g sin gÞ
ffiffiffiffiffiffiffiffi
p=q

p
; where p and q; representative of the material

used for principal and secondary stays, respectively, have been defined in Eq. (24). Since the case
of interest is when p=qb1 and bb1; from Eq. (51) it is then clear that the set of secondary cables
has only a limited influence upon the first natural frequency of the bridge. This finding is not
surprising since, as noticed from Fig. 6, the secondary cables do not produce noteworthy
modifications of the girder deflection curve.
As an example, consider the following data, taken from a real bridge: m ¼ 2� 104 kg=m;

L ¼ 135 m; a ¼ arctanð1=2:5Þ; g ¼ 451: Moreover, assume that the tensile stress in the principal
stays, of Young’s modulus E ¼ 2� 1011 N=m2; is s0 ¼ 4� 108 N=m2:When the secondary cables
are absent, it results in

p ¼
A1

d1
¼

mg

s0 sin
2 a

; hE1 ¼ pE ð52Þ

and consequently, from Eq. (49), o0 ¼ 4:335 rad=s: On the other hand, for q=p ¼ 0:001; a
reasonable value for a real bridge, one finds from Eq. (28) b ¼ 63:24; and from Eqs. (31), (32), (46)
and (47), o ¼ 4:463 rad=s; corresponding to an increment of less than 2%.
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In conclusion, for the cases of interest (p=qb1) the secondary cables have only a limited
influence on the first natural vibration mode of the system. Consequently, while estimating the
first natural frequency, not a significant error is made if the presence of the secondary cables is
neglected. In other words, the network suspension bridge may be considered as an ordinary cable-
stayed bridge.

5. The vibrations of the stays

The following analysis, based upon the continuum approach, describes the vibration of the
network as a whole, allowing one to evaluate the efficiency of the inter-ties in reducing the natural
oscillations of the principal stays.

5.1. The model

Consider the problem represented in Fig. 7. The structural scheme is equal to that in Section 3,
with the exception that now the beam is subjected to a uniformly distributed pulsing load
P1 sinð2OtÞ in addition to the dead load mg: The cyclic action models the excitation due to traffic
or environment, or at least may be thought of to be the first term of a Fourier’s expansion. As
already mentioned in Section 2, recall that the pulsing part of such actions are usually so feeble
that they may induce significant girder oscillations only when in resonance with the overall bridge
vibration. This implies that 2O is of the same order of the fundamental bridge eigenfrequency,
which can be estimated through the analysis of Section 4.
While studying the dynamic equilibrium of the wedge-shaped membrane, its mass-per-unit-area

r cannot be neglected. Hamilton’s principle will be used to derive the equations governing the
system vibrations, considering the equilibrium configuration under permanent loads as the
reference state. To reach a closed-form solution, a few simplifying hypotheses will be introduced,

y

�

L

H

S

x

l*(y)

P1sin(2�t)

Fig. 7. The wedge-beam model to investigate the parametric resonance phenomenon.
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which represent the natural extension to this 2-D case of Kirchhoff hypotheses for the vibrating
string, discussed at length in Section 2.
First of all, similarly to Eq. (1), one can surmise that the incremental strain of the wedge,

measured from the stressed reference state, is given by

exxDu;x þ
v;2x
2
; gxyDu;y þv;x ; eyyDv;y ; ð53Þ

where uðx; yÞ and vðx; yÞ represents the incremental displacement components in the x and y

directions, respectively (Fig. 7). Motivation for this is that the principal cables, parallel to the
x-axis, are much stiffer than the secondary ones, so that, since v;x bu;x ; the second order term v;2x
may become comparable with the others. The incremental stress components fsxx; syy; txyg are
given by

sxx ¼ l11exx þ l12eyy;

syy ¼ l12exx þ l22eyy;

txy ¼ mgxy ð54Þ

with [20]

l11 �
E1

1� n1n2
; l22 �

E2

1� n1n2
; l12 �

n1E2

1� n1n2
; m � G; ð55Þ

where E1; E2; n1; n2 and G are related to the cable-net shape and size of Fig. 4 by Eq. (14).
The expression of the potential energy must account for the fact that the system reference

configuration is not natural. Denoting with fs0xx;s
0
yy; t

0
xyg the stress state in the membrane under

permanent loads, one may assume

s0xx ¼
mg

h sin2 a
; s0yy ¼ 0; t0xy ¼ 0: ð56Þ

These expressions directly follow from Eq. (36) and represent an approximate elastic solution for
the system subjected to the dead load mg; uniformly distributed along the beam. Consequently,
the potential energy U can be written in the form [25, Section 2.5]

U ¼ h

Z
B

s0xxexx dx dy þ
1

2
h

Z
B

ðl11e2xx þ l22e2yy þ mg2xyÞ dx dy

þ
Z
G

mg½sin a uðs cos a;�s sin aÞ þ cos a vðs cos a;�s sin aÞ� ds; ð57Þ

where B denotes reference domain of the wedge, G is its horizontal boundary (where the wedge is
connected to the beam) and the co-ordinate s is defined in Fig. 7. Similarly to Section 2, where the
weight of the string was neglected with respect to the weight of the suspended mass M (Fig. 2), the
term

h

Z
O
rgðu sin aþ v cos aÞ dx dy

has not been considered in Eq. (57).
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Moreover, since the stiffness of the principal stays refrains motions in the x direction, we expect
that v;tbu;t: The kinetic energy T is thus approximated by

T ¼
hr
2

Z
O
ðv;tðx; yÞÞ

2 dx dy

þ
m

2

Z
G
½ðu;tðs sin a;�s cos aÞÞ2 þ ðv;tðs sin a;�s cos aÞÞ2� ds: ð58Þ

Finally, the work done by the uniformly distributed pulsing load P1 sinðOtÞ reads

W ¼ �
Z
G

P1 sinð2OtÞðuðs sin a;�s cos aÞ sin aþ vðs sin a;�s cos aÞ cos aÞ ds: ð59Þ

Using expressions (57)–(59) in Hamilton’s principle

dðT � UÞ ¼ dW ; ð60Þ

the final result is the system of differential equations

sxx;x þtxy;y ¼ 0; ð61Þ

txy;x þsyy;y þ
mg

h sin2 a
v;xx þ

@

@x
ðsxxv;x Þ � rv;tt ¼ 0 ð62Þ

with boundary conditions

at y ¼ 0; syy ¼ 0; txy ¼ 0;

at y ¼ x cot a� L=sin a; u ¼ 0; v ¼ 0;

at y ¼ �x tan a;
u cos a� v sin a ¼ 0;

�mw;tt � P1 sinð2OtÞ þ hðs0xxv;x sin a cos aþ snnÞ ¼ 0:

( ð63Þ

For simplicity’s sake, in Eq. ð63Þ3; the beam displacement component in vertical direction is
denoted by w ¼ �ðu sin aþ v cos aÞ; while snn ð¼ sxx sin

2a� 2txy sin a cos aþ syy cos
2 aÞ repre-

sents the normal component of stress in the membrane on the line y ¼ �x tan a:
What should be noticed is that the non-linear effects in Eq. (62) are due to the term @

@x
ðsxxv;x Þ:

A simplified though accurate analysis can be obtained if, here, one considers for sxx the stress
corresponding to the static solution for the distributed load P1 sinð2OtÞ: Recall that this
hypothesis is similar to that commonly accepted for the vibrating string: in Section 2 the
incremental axial force in the string coincided with the static solution for a straight cable under the
action of the pulsing load P0 sinð2OtÞ (see Fig. 2). Referring to the analysis of Section 3, using
Eq. (36) one may write

@

@x
ðsxxv;x ÞD

P1 sinð2OtÞ

h sin2 a
v;xx : ð64Þ

Consequently, Eqs. (61) and (62) reduce to the linear system of differential equations

sxx;x þtxy;y ¼ 0; ð65Þ

txy;x þsyy;y þ
mg þ P1 sinð2OtÞ

h sin2a
v;xx �rv;tt ¼ 0: ð66Þ
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Regarding the boundary conditions, referring again to the simplifications used in the 1-D case,
instead of Eq. ð63Þ324; the alternative conditions

u ¼ 0

v ¼ 0

)
at y ¼ �x tan a; ð67Þ

having a strict analogy with Eq. ð3Þ223; where the end points of the string were considered to be
fixed and the axial load variable in time. Here, the end points of fibers y ¼ const are constrained
but, nevertheless, possible variations in the stress sxx are included through the pulsing term
P1 sinð2OtÞ appearing in Eq. (66). It is the presence of such a term that may give rise to the
possibility of parametric resonance.
In summary, the problem is governed by the system of differential equations (65) and (66), with

boundary conditions ð63Þ1; ð63Þ2 and (67). From this equations, adding proper initial conditions,
the system motion is determined.

5.2. Qualitative solutions

Before addressing the general problem, it is useful to consider first a few borderline cases.

5.2.1. Absence of secondary cables
The simplest case is when the secondary cables are absent. Letting A2-0 in Eq. (14), one

obtains from Eq. (55)

l11CE1; l12C0; l22C0; n1C0; jn2joN:

System (65), (66), taking into account Eqs. (54), (55) and expressions (53) for exx; eyy and gxy;
reduces to

@

@x
u;x þ1

2
v;2x

� �
¼ 0;

mg þ P1 sinð2OtÞ

sin2 a
� rhv;tt ¼ 0: ð68Þ

No partial derivatives with respect to y appear in these expression, so that one can consider the
problem separately on the lines y ¼ const: In fact, it is clear that when the secondary cables
are vanishing, every fiber disposed parallel to the x axes can move independently from the
surrounding ones. In other words, it is as if the wedge was made of independent, parallel wires.
The one-dimensional solution of Section 2 is thus easily recovered. Following the method of

separation of variables, consider

vðx; y; tÞ ¼ Cðx; yÞFðy; tÞ; ð69Þ

which, after substitution in Eq. ð68Þ2; gives

mg þ P1 sinð2OtÞ

sin2a

C;xx

C
� rh

F;tt
F

¼ 0
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and the following eigenvalue problem

C;xx

C
þ zðyÞ ¼ 0; ð70Þ

F;tt þ
mg þ P1 sinð2OtÞ

rh sin2a
zðyÞF ¼ 0 ð71Þ

for some unknown function z ¼ zðyÞ: From Eq. (70), the general expression for C is

Cðx; yÞ ¼ AðyÞ sinðx
ffiffiffiffiffiffiffiffi
zðyÞ

p
Þ þ BðyÞ cosðx

ffiffiffiffiffiffiffiffi
zðyÞ

p
Þ ð72Þ

and the boundary conditions ð63Þ2 are automatically satisfied. In order to respect Eq. (67), AðyÞ
and BðyÞ in Eq. (72) must satisfy the system

AðyÞ sin
L

cos a
þ y tan a

	 
 ffiffiffiffiffiffiffiffi
zðyÞ

p� �
þ BðyÞ cos

L

cos a
þ y tan a

	 
 ffiffiffiffiffiffiffiffi
zðyÞ

p� �
¼ 0;

AðyÞ sin �y cot a
ffiffiffiffiffiffiffiffi
zðyÞ

p� �
þ BðyÞ cos �y cot a

ffiffiffiffiffiffiffiffi
zðyÞ

p� �
¼ 0:

Requiring that the determinant of this system is zero, one obtains

sin
L

cos a
þ

y

sin a cos a

	 
 ffiffiffiffiffiffiffiffi
zðyÞ

p� �
¼ 0;

which gives ffiffiffiffiffiffiffiffi
zðyÞ

p
¼

kp
ððL=cos aÞ þ ðy=sin a cos aÞÞ

¼
kp

lnðyÞ
; ð73Þ

where k is an integer number and

lnðyÞ �
L

cos a
þ

y

sin a cos a
;

evidenced in Fig. 7, represents the length of fibers parallel to the x-axis at y: Consequently Cðx; yÞ
now reads

Cðx; yÞ ¼ AðyÞ sin
kp

lnðyÞ
L

cos a
þ y tan a� x

	 
� �
;

where AðyÞ represents the (undetermined) amplitude of the oscillations of the fiber at y: The
analogy with the vibrating string problem is immediate.
The displacement component uðx; y; tÞ can be found a posteriori from Eq. ð68Þ1: Supposing it is

of the form

uðx; y; tÞ ¼ Xðx; yÞFðy; tÞ; ð74Þ

where Fðy; tÞ is the same as in Eq. (69), one finds that Xðx; yÞ is the solution of the differential
equation

X;xx ¼ �
1

2

@

@x
ðC;x Þ

2;

with boundary conditions ð63Þ2 and (67).
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Observe that by posing P1 ¼ 0 in Eq. (71), recalling Eq. (73), one obtains that fibers at position
y ¼ const vibrate with a cyclic frequency given by

o2
0 ¼

mg

hr sin2a

kp
lnðyÞ

	 
2

: ð75Þ

This represents the natural fiber frequency. The correspondence with Eq. (9) is easily seen.
The stability of the fibers at y ¼ const is then governed by the Mathieu’s equation (71) which,

because of Eq. (73), becomes

F;tt þ
mg þ P1 sinð2OtÞ

hr sin2a

kp
lnðyÞ

	 
2

F ¼ 0: ð76Þ

The corresponding discussion is analogous to that presented for the unidimensional problem in
Section 2 through the stability chart of Fig. 3. In particular, the cyclic frequency 2O of the pulsing
load has to be compared with o0 defined in Eq. (75).

5.2.2. Secondary cables slightly inclined to the main stays

As a second case, suppose that the angle g that the secondary cables forms with the
principal ones is very small, i.e., g-0: From Eq. (14), the order of magnitude of the elastic
moduli is

E2 ¼ E1Oðg8Þ;
1

n1
¼ Oðg4Þ; n2 ¼ Oðg8Þ; G ¼ E1Oðg4Þ ð77Þ

and consequently, from Eq. (55)

l11 ¼ OðE1Þ; l22 ¼ l11Oðg8Þ; l12 ¼ l11Oðg4Þ; m ¼ l11Oðg4Þ: ð78Þ

Thus, recalling (53) and (54), neglecting higher order terms, expression (65) reduces to

@

@x
u;x þ

v;2x
2

	 

¼ 0: ð79Þ

Concerning Eq. (66), one observes that since g is assumed very small, one may anticipate that
exx5eyy: Consequently, because of Eq. (78), the stress component syy results to be very small. For
the same reasons, it is natural to expect u;yx 5v;xx : Consequently, keeping only the leading terms
in Eq. (66), the following equation is obtained:

mg þ mh sin2aþ P1 sinð2OtÞ

rh sin2a

	 

v;xx �v;tt ¼ 0: ð80Þ

It is immediate to recognize that Eqs. (79) and (80) are perfectly analogous to Eqs. ð68Þ1 and
ð68Þ2; provided one substitutes the quantity mg with ðmg þ mh sin2aÞ: Moreover, observe that no
partial derivative with respect to the y variable is present in Eqs. (79) and (80), so that vðx; y; tÞ can
still be though of as written in the form (69). Repeating the same analysis of Section 5.2.1, one
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obtains a condition analogous to Eq. (73). A posteriori, in proximity of the free edge, Eq. ð63Þ1
can still be considered identically satisfied up to higher order terms.
Therefore, in this case the stability condition can be discussed by examining equation

F;tt þ
mg þ mh sin2aþ P1 sinð2OtÞ

rh sin2a

kp
ln

	 
2

F ¼ 0; ð81Þ

which takes the place of Eq. (76).
The fact that any fiber parallel to the x-axis can be thought of as vibrating independently

from the neighboring ones, is a consequence of the assumption g51: If g is very small (Fig. 4),
the resistance that the secondary cables offers to the mutual approaching of any two con-
secutive principal stays is consequently reduced (recall that from Eq. (77) one has E2 ¼ Oðg8Þ).
Moreover, by comparing Eqs. (76) and (81), it follows that the effect of the secondary cables
is equivalent to an apparent tensile-stress increase in the principal stays, percentage-wise
equal to

i% ¼
mh sin2aþ mg

mg
: ð82Þ

This effect is in favor of the stability of the system.

5.2.3. Secondary cables orthogonal to the main stays

A third important case is when g ¼ 1
2
p: Now, since d1 ¼ d2 tan g; it follows from (14)

E1h ¼
EA1

d1
; E2h ¼

EA2

d2
; n1 ¼ n2 ¼ 0; G ¼ 0; ð83Þ

so that, using Eq. (55),

l11 ¼ E1; l22 ¼ E2; l12 ¼ m ¼ 0:

Again, it is logical to expect u;xy 5v;xx : Neglecting higher order terms, the governing system of
differential equations reads

@

@x
u;x þ

v;2x
2

	 

¼ 0; ð84Þ

l22hv;yy þ
mg þ P1 sinð2OtÞ

sin2a
v;xx �rhv;tt ¼ 0 ð85Þ

with boundary conditions ð63Þ122 and (67). In particular, the second of Eq. ð63Þ1 is automatically
satisfied, whereas syy ¼ 0 implies v;y ¼ 0 at y ¼ 0:
What should be noticed in Eq. (85) is the term l22hv;yy which, on the contrary to the preceding

cases, establishes that the fibers at y ¼ const cannot vibrate independently one another. The
secondary cables should thus give a strong contribution in enhancing the stability of the system.
The analytic discussion of system (84) and (85) is not immediate. One may tentatively

investigate solutions of the type

vðx; y; tÞ ¼ Lðx; yÞFðtÞ:
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Multiplying Eq. (85) by L and integrating other the domain O; and noticing that because of the
boundary conditions the identitiesZ

B

@

@x
ðL;x LÞ da ¼

Z
@B

ðL;x LÞnx dl ¼ 0;

Z
B

@

@y
ðL;y LÞ da ¼

Z
@B

ðL;x LÞny dl ¼ 0

hold, one obtains

l22h
Z
B

ðL;y Þ
2 da þ

mg þ P1 sinð2OtÞ

sin2a

Z
B

ðL;x Þ
2 da

	 

Fþ rh .F

Z
B

L2 da ¼ 0: ð86Þ

Following Rayleigh’s method, Lðx; yÞ may be selected in the form

Lðx; yÞ ¼ 1
4
ð�y2 þ x2 tan2 aÞ �y2 þ

L

sin a
�

x

tan a

	 
2
" #

: ð87Þ

The evaluation of the integrals that appear in Eq. (86) presents no difficulty and can be easily
performed either analytically or numerically. Table 1 gives C1 and C2 as functions of the angle a
of the wedge, where

C1 ¼ L2

R
BðL;x Þ

2 daR
BL2 da

; C2 ¼ L2

R
BðL;y Þ

2 daR
BL2 da

: ð88Þ

The system vibration is thus governed by Mathieu’s equation

l22h
C2

L2
þ

mg þ P1 sinð2OtÞ

sin2a

C1

L2

	 

Fþ rh .F ¼ 0: ð89Þ

The natural vibration frequency o0 of the cable net, considered as a whole, may be obtained by
posing P1 ¼ 0 in Eq. (89), to give

o2
0 ¼

1

rhL2
l22hC2 þ

mgC1

sin2 a

	 

: ð90Þ

This value can be compared with that given by Eq. (75) in Section 5.2.1, corresponding to the
absence of secondary cables. For, recalling that parameters q and p of Eq. (24) indicate the
quantity of material employed for the principal and secondary cables respectively, from Eqs. (55)
and (14) it follows, as an order of magnitude

E2h ¼ l22h ¼ qE; mgCsadm

A1

d1
¼ sadmp; ð91Þ

Table 1

Parameters C1 and C2 for different values of the wedge angle a

Cot a 1 1.5 2 2.5 3 3.5

C1 10.00 13.63 15.45 16.45 17.04 17.44

C2 10.00 13.55 37.03 61.24 91.54 127.71
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where sadm represents the design stress in the principal stays. Thus, from Eq. (91),

l22h
mg

¼ O
q

p

sadm

E

	 

:

Observing that for steel cables E=sadm ¼ Oð103Þ; the great efficiency of the secondary cables in
enhancing the natural vibration frequencies of the stays is clear.
The stability analysis from Mathieu’s equation (89) is straightforward. Introducing t ¼ Ot; the

canonical form

d2F
dt2

þ
l22C2

rO2L2
þ

mg C1

hr sin2aO2L2

	 

þ

P1C1

hr sin2aO2L2
sinð2tÞ

� �
F ¼ 0 ð92Þ

is obtained. Recalling Eq. (90), this expression can also be written in the form

d2F
dt2

þ
o0

O

� �2
þ2

o0

O

� �2P1

N

	 

sinð2tÞ

� �
F ¼ 0;

where N is a characteristic parameter, having the dimension of a length, equal to

N ¼
2o2

0hrL2 sin2a
C1

¼
2

C1
ðl22hC2 sin

2aþ mgC1Þ:

The corresponding discussion is analogous to that of the unidimensional case and can again be
done referring to the stability chart in Fig. 3. Also in this case, it is important to check that the
cyclic frequency 2O is sufficiently far away from twice the natural frequency o0:

5.2.4. Approximate solution for the general case
The analytical study of the system of equations (65) and (66) in the most general case is so

difficult that in general a numerical approach should be envisaged. An engineering approach, that
has proved to be satisfactory in some practical case, is to give an approximate solution consisting
in a combination of the two limit cases analyzed in Sections 5.2.2 and 5.2.3. Despite that all the
elastic moduli are now different from zero, one may imagine that, according to the analysis of
Section 5.2.2, the presence of the m modulus is equivalent to an apparent increase in the stress
acting in the principal stays according to Eq. (82). In practice, one sets m ¼ 0; but conventionally
increase the permanent load mg to the ratio r defined as

r ¼
mh sin2aþ mg

mg
:

It follows that the resulting system of differential equations is analogous to that considered in
Section 5.2.3. Repeating the same analysis, considering again a shape function Lðx; yÞ of the form
(87), the natural cyclic frequency of the cable net is given by an expression analogous to Eq. (90),
but where mg is substituted by rmg: The discussion of the stability of the system follows the same
rationale leading to Eq. (92).
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6. Example and discussion

To illustrate the practical use of the continuum approach in one example, the method is now
applied to the layout of the Normandy Bridge. Recently, built in France [14–16], with its 856 m
main span the structure represents one of the grandest cable-stayed bridges in the world. Due to
its daring size, a particular attention had to be paid to the stay design since, apart from
technological problems, their length constituted the bridge vulnerable point. To mention just one
aspect, 55% of the transverse bridge gabarit is formed by the stay sheaths: only considering
he wind pressure, one can imagine the order of magnitude of the transverse forces transmitted to
the stays. The risk of parametric-resonance-induced cable vibrations had been evidenced from
the beginning, by comparing the natural frequencies of the whole structure, obtained by modelling
the cables as truss members, and the natural frequencies of the stays, calculated supposing them
fixed at their anchorage points.
For medium-span bridges, the cable vibrations may be reduced by dampers but, on the

Normandy Bridge scale, the efficiency of such a countermeasure is limited and the only
practicable solution is a system of secondary inter-ties. These were preliminarily designed by
considering the nodes fixed and calculating the axial force in the resulting cable portions due to
wind action, modelled as a static pressure of 3 kN=m2 [14]. This preliminary study, later
corroborated by more refined numerical analysis [14], suggested the use of only four secondary
cables for each stay plane, according to the scheme of Fig. 8. Of course, the secondary cables have
no effect if the stays vibrate at right angle to the plane in which they are contained, but practical
experience has shown that this vibration mode is much less frequent than in-plane oscillations.
This is probably due to the stay initial sag under its own weight, which causes the stay to
straighten and start moving in the vertical plane, when the anchorage points are displaced apart.
Many different layouts were considered for the secondary cables. At first, pseudo-curvilinear

profiles, similar to Leonhardt’s design for crossing the Messina strait [13], were proposed. Later,
this solution was disregarded due to the difficulties in regulating the cable tension in the
construction phase. The rectilinear disposal of Fig. 8, with secondary cables almost at right angle
to the principal stays, was definitely selected. A precise program was followed to progressively
tension the secondary cables to avoid their slackening, and a particular sheathing was conceived
to increase the intrinsic cable damping [14].
It is now discussed whether the assumptions of the continuum approach of Section 5.1 do apply

to this structure. The Normandy bridge is of the slender deck type, since the girder height, for
aerodynamic reasons, is contained in only 3 m (1/285 of the bridge main span). Thus, at least as a
first order approximation, the girder flexural inertia, as well as its axial deformation, can be
neglected. On the other hand, the pylons constitute quite a rigid constraint, since they are
anchored by robust back stays to side spans, which are further stiffened by intermediate piers at a
fair distance one from the other (see Fig. 8).

Honfleur Le Havre

Fig. 8. Layout of the Normandy Bridge (France, 1994).
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As far as the stays are concerned, they were pre-tensioned to avoid slackening under live loads.
However, neither the cross section of the principal stays is constant, nor the stays follow the harp
pattern (the layout is of the semi-harp type). Notice, however, that the longest stays are sensibly
parallel one another and their cross-section almost constant. Now, the bridge deflection, as well as
its dynamical response, is governed by the elasticity of the stays anchored in proximity of the mid-
span, while the short stays play a side role, since they connect the girder where it already rests on
pylons. Therefore, when considering the homogenized web-bridge, one may tentatively pretend
that the layout determined by the longest stays is ideally prosecuted throughout the bridge. In
other words, the original layout is approximated by a harp-type layout, where cables are parallel
to the longest stays and maintain the same cross-section.
Under these hypotheses, it is possible to correlate the real bridge with the auxiliary problem of

Fig. 5. The following data are taken from Refs. [14,15]. Let 2L ¼ 856 m represent the length of
the bridge main span, H ¼ 161 m be the height of the pylons above the girder and a ¼
arctanðH=LÞ ¼ 20:61 be the angle formed by the longest stays with the horizontal. Let i ¼ 19:65 m
denote the relative distance between stay anchor points to the girder, m ¼ 6:5 t=m the mass per
unit length of half of the girder (i.e., that portion supported by each one of the two stay planes of
the bridge) and LsDL=cos a ¼ 457 m the length of the longest principal stay. Let A1 ¼ 74:20 cm2

be their cross-sectional area (they are composed of 56 steel 0:600-tendons) and ms ¼ 8000� 74:2�
10�4 ¼ 59:36 kg=m the corresponding mass per unit length. Consider then a triangle-shaped cable
net as in Fig. 4, for which d1 ¼ i sin a ¼ 6:92 m represents the interaxial distance between
principal stays.
Neglecting the girder flexural stiffness, the axial load in the principal stays is approximately

ss ¼
mgi

A1 sin a
¼ 47:94 kN=cm2:

Thus, from the analysis of Sections 2 and 5.2.1, the circular frequency corresponding to the first
natural vibration mode for the longest stay results

os ¼
p
Ls

ffiffiffiffiffiffiffiffiffiffi
ssA1

ms

s
¼ 1:68 rad=s ð93Þ

and the corresponding period Ts ¼ 3:75 s:
In order to evaluate the natural frequencies of the whole bridge, we refer to Section 4. When no

secondary cables are present, formula (49) applies, to give

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
sin 2a

Eg

ssL

r
¼ 2:10 rad=s; T0 ¼ 2:9 s: ð94Þ

When, in general, secondary cables are added, Eq. (47) should be used instead, but when p=qb1
(the only case of interest), since the complex parameter b becomes very large (recall Eqs. (24) and
(28)), the approximation furnished by Eq. (49) is satisfactory. In other words, the value in Eq. (94)
does not vary sensibly when a moderate warp of secondary cables is added.
The effect of inter-ties upon the vibration of the cable net is established using the results of

Section 5. First consider the layout of the real bridge, sketched in Fig. 8. From Ref. [14], the
following data have to be considered for the net (see Fig. 4): A2 ¼ 2:80 cm2 as the cross-sectional
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area of each secondary cable; g ¼ p=2 as the angle formed by the secondary cables with the
principal ones; d2 ¼ 57:1 m as the interaxial distance of the secondary cables.
Recalling Eqs. (24), (25) and (55), it is easily found

l11h ¼ E1h ¼
EA1

d1
¼ 2144 kN=cm; l12hD0;

l22h ¼ E2h ¼
EA2

d2
¼ 9:8 kN=cm; mhD0;

where h is the reference thickness of the equivalent continuous wedge-shaped membrane.
Moreover, from Eq. (24),

p ¼
A1

d1
¼ 0:1072 cm2=cm; q ¼

A2

d2 sin g
¼ 4:9� 10�4 cm2=cm;

p

q
¼ 219:

Thus, the assumed estimation p=qb1; which justified the asymptotic expansions for b-N and
d-0; is very well verified in this case.
Now, the wedge density r is given by

rhD8000 ðp þ qÞ ¼ 8:62 kg=m2:

Since H=L ¼ 161=428; using Eq. (88) the values C1 ¼ 16:67 and C2 ¼ 70:15 are calculated. The
natural cyclic frequency can thus be estimated, from Eq. (90), as

o2 ¼
1

rL2
l22C2 þ

mgC1

h sin2a

	 

¼ 43:58þ 5:42 ¼ 49:00 rad=s2;

o ¼ 7:0 rad=s; ð95Þ

to which corresponds the natural period T ¼ 0:9 s: What should be noticed, in any case, is the
great efficiency of the secondary cables in enhancing the natural frequency. Recall that in absence
of any connection, the frequency of the longest stay is, from (93), os ¼ 1:68 rad=s ðT0 ¼ 2:9 sÞ:
To investigate further, consider an alternative layout where secondary cables, while maintaining

the same interaxial distance, are each formed by one 0:600 tendon at an angle g ¼ p=36 ðB51Þ with
respect to the principal stays. From Eq. (24) it is found that

p ¼
A1

d1
¼ 0:1072 cm2=cm; q ¼

A2

d2 sin g
¼ 2:03� 10�3 cm2=cm;

p

q
¼ 53;

and from Eqs. (25) and (55)

l11h ¼ 2184 kN=cm; l12h ¼ 0:306 kN=cm;

l22h ¼ 0:00234 kN=cm; mh ¼ 0:306 kN=cm:

Recall, from the analysis developed Section 5.2.2, that when g is very small the vibrations of the
principal stays are practical independent one from the other. Using Eq. (82), the first natural
cyclic frequency of the longest stays reads

os ¼
p
Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mg þ mh sin2a

rh sin2a

s
¼ 1:73 rad=s: ð96Þ
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Comparing this value with os ¼ 1:68 rad=s ðTs ¼ 2:9 sÞ in Eq. (93), with no inter-ties, it
immediately follows that the obtainable benefit is very small, i.e., arrangements with g small are
not very efficient.
As a third possibility, imagine now that secondary cables are placed at an angle g ¼ p=4; still

maintaining fixed d2 ¼ 57:1 m: In this case

p ¼ 0:1072 cm2=cm; q ¼ 6:93� 10�4 cm2=cm; p=q ¼ 155; r ¼ 8:63 kg=m2;

E1h ¼ 2144:5 kN=cm; E2h ¼ 3:421 kN=cm; n1 ¼ 1; n2 ¼ 0:0016

l11h ¼ 2148 kN=cm; l12h ¼ 3:427 kN=cm; l22h ¼ 3:427 kN=cm; mh ¼ 3:465 kN=cm:

Using the results of Section 5.2.4, the first natural cyclic frequency of the stay plane is equal to

o2 ¼
1

rL2
l22C2 þ

ðmg þ mh sin2aÞC1

h sin2a

	 

¼ 15:20þ 5:41þ 3:65 ¼ 24:6 rad=s2; ð97Þ

corresponding to o ¼ 4:95 rad=s and T ¼ 1:27 s: Comparing this value with Eq. (95), one notices
that this disposal is better than the previous one, but the layout actually used for the Normandy
Bridge ðgDp=2Þ is still stiffer.
As a final example, the case with d2 ¼ 57:1 m and g ¼ p=3 is analyzed for which:

p ¼ 0:1072 cm2=cm; q ¼ 5:66� 10�4 cm2=cm; p=q ¼ 189:3; r ¼ 8:62 kg=m2;

E1h ¼ 2144:5 kN=cm; E2h ¼ 6:340 kN=cm; n1 ¼ 0:333; n2 ¼ 9:85� 10�4

l11h ¼ 2145 kN=cm; l12h ¼ 2:120 kN=cm; l22h ¼ 6:342 kN=cm;

mh ¼ 2:120 kN=cm:

Still referring to Section 5.2.4, the cyclic frequency is now given by

o2 ¼
1

rL2
l22C2 þ

ðmg þ mh sin2aÞC1

h sin2a

	 

¼ 28:16þ 5:42þ 2:24 ¼ 35:82 rad=s2; ð98Þ

corresponding to o ¼ 5:98 and T ¼ 1:04 s: This value is intermediate between those obtained for
g ¼ p=4 and p=2:
The synthetic approach, which allows for a synoptic comparison of different configurations of

the secondary cables, can be of help in designing optimal cable stay arrangements. In particular,
this study seems to confirm that when the angle that secondary cables form with the principal stays
is small (gD0), the efficiency of the connection is limited. The principal stays may vibrate
practically independently from one another, and the effect of the secondary warp is only equivalent
to a virtual (small) increment of their normal tensile force, as stated by Eq. (82). The stays’ natural
frequencies are enhanced most when the secondary cables are placed almost at right angle to the
principal stays (gDp=2). For intermediate values of g; the efficiency of the secondary cables can be
estimated to be between these two borderline cases, increasing in general with increasing g:
Checking against the risk of parametric-resonance-induced cable vibrations consists in verifying

that the principal eigenfrequency of the whole bridge, given by Eq. (94), is sufficiently distant from
twice the fundamental eigenfrequency of the stay. In this respect, the efficiency of different
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configurations of secondary stays may be immediately evaluated by comparing Eq. (94) with
Eqs. (93), (95)–(96), (97) or (98).
In conclusion, the simple and concise formulas obtained from the continuum approach allow a

ready determination of the order of magnitude of the characteristic parameters governing the
dynamic response of the bridge. In particular, it is possible to take into account the interaction
between contiguous stays when connected by secondary cables and to conceive optimal layouts to
enhance the overall natural frequencies of the network. Concerning the latter point, the
conclusions are in agreement with the cable arrangement adopted for the Normandy Bridge, for
which an orthogonal mesh was selected.

Appendix

The solution of a plane problem in anisotropic linear elasticity theory can be obtained using a
generalization of Gousart’s complex representation method. Referring to Ref. [20, Chapter II] for
a r!esum!e of the technique, here just a few results are recalled. When the complex parameters,
solutions of the characteristic equation (18), are pure distinct imaginary numbers, say m1 ¼ ib;
m2 ¼ id; m3 ¼ %m1 and m4 ¼ %m2 (case I of Section 3), the generalized complex numbers

z1 � x þ iby; z1 � x þ idy ðA:1Þ

are defined. Then, it can be verified that the complex potential F ðx; yÞ; introduced in Eq. (16), can
be expressed as the real part of the complex function #Fðz1; z2Þ; i.e.,

Fðx; yÞ ¼ 2Re½ #Fðz1; z2Þ�: ðA:2Þ

For example, for the case of Section 3, one can directly verify that F ; previously expressed in polar
co-ordinates by Eqs. (20) and (21), assumes the simple form

F ðx; yÞ ¼ 2Re½ #Fðz1; z2Þ�

¼ 2Re #A
b2z22 � d2z21
2ðb2 � d2Þ

þ #Bi
bz22 þ dz21

4bd
þ #C #jðz1; z2Þ þ #D

z22 � z21

2ðb2 � d2Þ

� �
; ðA:3Þ

where

#jðz1; z2Þ ¼
1

2ðb2 � d2Þ
ðbz22 ln z2 � dz21 ln z1Þ: ðA:4Þ

Here, the principal representation of the logarithm where the anomaly is comprised in the interval
ð�p;pÞ has been selected.
The theory of generalized complex variables [20] furnishes the expression of the stress

components

sxx ¼ 2Re ðibÞ2
@2 #F

@z21
þ ðidÞ2

@2 #F

@z22

� �
;

syy ¼ 2Re
@2 #F

@z21
þ

@2 #F

@z22

� �
;
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txy ¼ �2Re ib
@2 #F

@z21
þ id

@2 #F

@z22

� �
ðA:5Þ

and the displacement field

u ¼ 2Re a1
@ #F

@z1
þ a2

@ #F

@z2

� �
� oy þ u0;

v ¼ 2Re b1
@ #F

@z1
þ b2

@ #F

@z2

� �
þ ox þ v0 ðA:6Þ

with

a1 ¼
1

E1
ðibÞ2 �

n1
E1

; a2 ¼
1

E1
ðidÞ2 �

n1
E1

;

b1 ¼ �
n1
E1

ðibÞ þ
1

E2ðibÞ
; b2 ¼ �

n1
E1

ðidÞ þ
1

E2 ðidÞ
: ðA:7Þ

On the free edge of equation y ¼ 0 (see Fig. 5), from Eqs. ðA:5Þ2 and ðA:5Þ3 the boundary
conditions read

Re
@ #F

@z1
þ

@ #F

@z2

� �
z1¼x; z2¼x

¼ 0; ðA:8Þ

Re ib
@ #F

@z1
þ id

@ #F

@z2

� �
z1¼x; z2¼x

¼ 0; ðA:9Þ

from which #A ¼ 0 and #B ¼ 0 in (A.3). Moreover, conditions ð15Þ1 become

sxx
cos2 a

E1
�

n1
E1

sin2 a
	 


þ syy
sin2a

E2
�

n1
E1

cos2a
	 


�
txy

G
sin a cos a ¼ 0;

sxx sin
2aþ syy cos

2a� 2txy sin a cos a ¼
q0

h
;

which, taking into account Eq. (A.5), give

#C ¼ �
q0

h
K1; #D ¼

q0ð1þ K2Þ

2h sin2a
ðA:10Þ

with K1 and K2 defined in Eqs. (31) and (32).
The displacement components can be calculated from Eq. (A.6), and give expressions (39) and

(40).
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